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Abstract—Hyperdimensional computing (HDC) is a novel com-
putational paradigm that operates on long-dimensional vectors
known as hypervectors. The hypervectors are constructed as
long bit-streams and form the basic building blocks of HDC
systems. In HDC, hypervectors are generated from scalar values
without considering bit significance. HDC is efficient and robust
for various data processing applications, especially computer
vision tasks. To construct HDC models for vision applications,
the current state-of-the-art practice utilizes two parameters for
data encoding: pixel intensity and pixel position. However, the
intensity and position information embedded in high-dimensional
vectors are generally not generated dynamically in the HDC
models. Consequently, the optimal design of hypervectors with
high model accuracy requires powerful computing platforms for
training. A more efficient approach is to generate hypervectors
dynamically during the training phase. To this aim, this work
uses low-discrepancy sequences to generate intensity hypervectors,
while avoiding position hypervectors. Doing so eliminates the
multiplication step in vector encoding, resulting in a power-
efficient HDC system. For the first time in the literature, our
proposed approach employs lightweight vector generators utiliz-
ing unary bit-streams for efficient encoding of data instead of
using conventional comparator-based generators.

I. INTRODUCTION

Traditional computing systems based on positional binary
radix encounter practical limitations in the efficient hardware
design of today’s big data applications. These systems suf-
fer from extremely high power and memory consumption,
particularly for cognitive tasks with iterative and complex
learning procedures. Emerging computing technologies such as
Hyperdimensional Computing (HDC), Stochastic Computing
(SC), Unary Bit-stream Computing (UBC), Quantum Comput-
ing (QC), and Approximate Computing (AC) are shaping the
next generation of computing systems. Among these, HDC has
recently gained significant attention due to its lightweight, ro-
bust, and efficient solutions for various learning and cognitive
tasks [1], [2], particularly for natural language processing [3]
and image classification [4]. HDC encodes information using
holographic hyperdimensional vectors, known as hypervectors,
consisting of randomly distributed binary values of −1 (logic-
0) and +1 (logic-1). This unconventional representation en-
ables fast, robust, efficient, and fully parallel processing of
large sets of data [5].

For high-quality HDC, hypervectors are expected to be
orthogonal, i.e., uncorrelated with each other. By generating
pseudo-random vectors, prior works encode data to hypervec-
tors that are only nearly orthogonal. This work introduces a
novel hypervector encoding scheme that radically differs from
the encoding methods currently used in HDC systems. We
propose a simpler and more effective method to achieve or-

thogonality by drawing an analogy between HDC and SC [6].
Instead of relying on pseudo-randomness, we leverage quasi-

randomness provided by low-discrepancy (LD) sequences [7]
to generate high-quality hypervectors. In addition, for the first
time, to the best of our knowledge, we take advantage of
UBC and its unary data representation [8] for the lightweight
design of HDC systems. In what follows, we summarize the
primary contributions of this work.
① Utilizing quantized LD sequences for hypervector encoding
for the first time in the literature.
② Eliminating position hypervectors in HDC system, allevi-
ating the total memory consumption, vector generation load,
and arithmetic operations.
③ Developing uHD, a hybrid HDC system integrating unary
bit-streams and hypervector processing.
④ Developing a lightweight combinational logic to compare
unary bit-streams for dynamic generation of hypervectors.
⑤ A new circuitry for the binarization operation needed in
HDC systems.
⑥ Achieving a higher image classification accuracy compared
to the baseline HDC with pseudo-random hypervectors.

II. BACKGROUND AND MOTIVATION

HDC maps raw input data into a high-dimensional space
with hypervectors of +1s and −1s [9]. Each dimension in this
space corresponds to a feature or attribute in the original data.
HDC consists of two primary steps: hypervector generation

and encoding, of which the latter creates another hypervector.
While the encoding step has been extensively discussed in
the literature [2], [10], vector generation is typically left to
the performance of pseudo-randomness [11]. When a scalar
value X is to be represented using a hypervector, its numerical
value can be used for vector generation. However, when X

is symbolic data (e.g., a letter), a proper vector should be
attributed to the symbol. The term proper emphasizes the
importance of orthogonality, as each symbol without numer-
ical information should be treated equally and embedded
in hypervectors without any bias towards one symbol over
another. In other words, each hypervector should have an
equal number of +1s and −1s with an independent random
distribution. This representation requires good randomness to
ensure hypervectors remain uncorrelated with each other. An
important target of this work is to produce hypervectors with
ideal orthogonality. For the scalar case, X can be a grayscale
pixel value [4] (0 ≤ X ≤ 255 for 8-bit representation), the
amplitude of a discrete signal [2], or a numerical feature
of data [9]. This work will follow the convention for image
classification, so we assume X is a pixel value.
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Fig. 1. Traditional hypervector design and encoding. (a) Positional and Level
hypervector generation, (b) Binding, Bundling, and Binarization.

Fig. 1(a) shows a sample image pixel and its corresponding
position (P ) and level (L) hypervectors. Hypervectors are
assigned with a dimension or size of D. P s are obtained from
symbolic data, and Ls from scalar values. P s are generated
by comparing some random (R) numbers (0 ≤ R1..D ≤ 1) with
a threshold value (t = 0.5; no-bias point between 0 and 1).
Ls are typically generated by bit flipping [11]. Hence, closer
numerical scalars have similar hypervectors, while different
numerical scalars have more uncorrelated hypervectors. In
generating both P and L, a +1 or −1 value is returned for
any hypervector position. If R > t, the corresponding position
is set to −1; otherwise, it is set to +1 [2].

Fig. 1(b) illustrates the remaining encoding steps on the
generated hypervectors. These steps compose the class

hypervector (C), which holds the overall representation
of a class (e.g., Fig. 1 shows an image from class-5 and its
contribution to the corresponding class hypervector).
All images in the training set contribute to building the class
hypervectors by processing the hypervectors (P and L) of
all their pixels. The generated hypervectors are first multiplied
element-wise (via bit-wise XOR). This is known as binding.
The multiplied hypervectors coming from each pixel (L⊕P )
are accumulated by traversing positions. Hypervectors are
added to each other by another element-wise processing (bit-
wise popcount). This is known as bundling [12]. Then,
the final values are evaluated for class hypervectors

after scanning all data samples of the same class. Finally,
a binarization operation is performed via a sign function
(thresholding with a comparator or a subtractor) [3].
For each class in training, the labeled data are processed to
build their corresponding class hypervector. This oper-
ation is performed only once, different from the conventional
learning systems with iterative forward passes throughout the
batches and epochs.

When all class hypervectors are defined (C1..q with

q-class dataset), the inference step measures the accuracy of the
testing dataset. The same encoding steps are followed for any
testing data to obtain a testing hypervector (Ctest). The final
classification is performed using a similarity check between
Ctest vs. C1, C2, ..., and Cq . In this work, we use cosine
similarity. The highest similarity between Ctest and one of the
trained classes gives the classification decision [3].

Generating pseudo-random hypervectors with high orthog-
onality during training can be very time- and memory-
consuming. To obtain a high classification accuracy, the best
performing P and L random hypervectors are assigned itera-
tively. Hypervectors with different distributions are generated
iteratively to find those with the highest orthogonality. One
of our goals in this work is to minimize the number of
vector operations. The bit-wise XOR operations in the binding
process involve both P and L hypervectors. We use an
encoding for level hypervectors that does not need iteration and
provides accurate encoding deterministically [13]. Instead of
pseudo-randomness, we provide high orthogonality via quasi-

randomness ①. Our approach eliminates the need for position
encoding and their corresponding multiplications ②. Thus,
single-iteration vector optimization is guaranteed thanks to the
properties of LD sequences [14].

As the first work of its kind, we use unary bit-streams in
HDC systems ③. UBC utilizes unary (aka thermometer) cod-
ing, representing data using bit-streams with logic-1s (or logic-
0s) aligned to the beginning or end of the bit-stream. For in-
stance, X1 → 0 0 0 0 0 1 1

X2 → 0 0 1 1 1 1 1
are two unary bit-streams of size N=7

representing 2 and 5. UBC can be exploited for the lightweight
design of HDC systems. Hypervector generation in current
HDC systems requires conventional binary comparators,
which are complex and consume significant power. We employ
UBC to design a new lightweight comparator logic for
dynamic hypervector generation ④.

In addition to optimizing vector generation and minimizing
the operations in encoding, we improve the hardware design of
the final stage with accumulation and binarization. We propose
a concurrent binarization during popcounting; Processing
over binary data allows using popcount to count only the
number of logic-1s. The binary output is obtained after D
cycles to be compared or subtracted from a threshold value.
This requires a separate module for thresholding or subtraction.
We simplify the binarization module to make the decision on
the spot while performing popcount ⑤.

III. EFFICIENT HYPERVECTOR ENCODING WITH UHD

We call the new unary HDC system uHD. uHD enjoys a
lightweight architecture by taking advantage of unary pro-
cessing. It also provides a higher accuracy by exploiting the
uncorrelation and recurrence properties of LD sequences.
uHD radically alters the encoding approach in HDC sys-

tems. Conventional HDC systems are bounded by the spatial
information of discrete data. LD sequences provide built-in
indexes to be used for the positional information. Fig. 2 depicts
the encoding using LD Sobol [7] scalars and indexes. We
eliminate P s and only encode Ls by using Sobol scalars. As
shown in Fig. 2, for encoding image data, we compare LD
Sobol sequences (Si) with image intensity values. We do not
encode positions; instead, we use the corresponding index of
any Sobol sequence (Si) ranging from S1 to Srow×column.
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Fig. 2. Hypervector generation using Sobol sequences [15].

Finally, the non-binary image hypervector formula turns into
ΣN

i=1
(Li). Any pixel intensity is encoded based on the pixel

position corresponding to the Sobol index. The normalized
intensity value (by D) is compared with each element in the
corresponding Sobol sequence. If the normalized intensity is
smaller than the Sobol number, the hypervector position gets
−1; otherwise, it gets +1. After obtaining L, we perform the
accumulation without the encoding’s multiplication step. Thus,
our novel approach achieves a multiplier-less vector encoding
for HDC.

From efficient hypervector encoding to complete hardware
design, we focus on extended design perspectives for efficient
HDC system design. Most prior works present hardware design
for the inference. However, training on edge devices is a more
challenging task. For high accuracy, the baseline HDC requires
iterative hypervector generation and processing. Hence, single-
pass data processing can significantly reduce runtime and
energy consumption. Our proposed encoding achieves this
benefit with a deterministic and reliable one-time iteration.
uHD reads two sets of data from memory: (i) processing

data such as image pixels or features and (ii) Sobol sequences.
We quantize both input data and Sobol scalar values in the
proposed approach. Utilizing Sobol scalar and index encoding
removes the need for P s and corresponding multiplications.
We use unary bit-streams instead of the conventional binary
radix encoding, bringing UBC into HDC systems for the first
time. Now, let us take a look at the overall design. With M -
bit quantization, only M -bit data is stored in memory. The
input data size depends on the features or raw data size, such
as the image’s row×column. Each Sobol sequence has a
length of D (i.e., has D Sobol numbers), where D is typically
in the range of 1K to 10K. Storing all Sobol data in registers
may not be possible as they may exceed the memory size
of the resource-constrained devices. Therefore, we use block
RAM (BRAM) in a re-configurable design platform to store the
quantized Sobol data. The processing data are relatively lighter
in size, so we keep them in registers. Fig. 3(a) illustrates how
we keep the data. The data are in quantized binary format
(e.g., M=4) in registers (REGs). For Sobol scalars, a BRAM

module holds binary values in M=4-bit (holding N=16-bit
unary bit-streams. Each scalar shows the total count of logic
1s in the bit-stream). Fig. 3(a) shows an example of quantizing
Sobol sequences. Here, ξ=16-level quantization is applied
to obtain the to-be-stored binary values. We note that this
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Fig. 3. Getting ready to hypervector generation. (a) Data represented in
memory for unary bit-stream processing, (b) Conventional unary stream
generation, and (c) proposed associative stream fetching.

data quantization does not affect the system’s accuracy. Even
though hypervector generation may experience some flipped
bits (+1 instead of −1, or vice versa), the accumulated values
yield large scalars (non-quantized class hypervector),
and the sign of accumulation is not easily affected.

Let us now discuss how we convert the data to unary bit-
streams. Unary bit-streams are conventionally generated by us-
ing a pair of M -bit binary counter and comparator [16],
as shown in Fig. 3(b). This design is compact, especially for
dynamic bit-stream generation with large sizes. However, our
HDC design works only on N=16-bit sequences, and so all
possible sequences can be pre-stored in memory. The data in
memory are converted to unary bit-streams on the fly. Fig. 3(c)
shows how we fetch the pre-stored unary bit-streams from
an associative memory. The binary scalar in REGs or BRAM
points to the corresponding index of a Unary Stream Table
(UST), and the target bit-stream is fetched. We put the first
design checkpoint here ➊ and compare energy consumption.
We synthesize uHD and the baseline design using Synopsys
Design Compiler with a 45-nm cell library. We compare the
energy consumption of the two approaches for generating one
bit of the hypervector. We observed that uHD consumes 0.77fJ
energy while the baseline design consumes 0.167pJ (both
designed for D=1K).

We generate hypervectors by comparing the data and Sobol
scalars. Instead of directly comparing quantized scalars via
conventional comparators, we use a novel unary bit-stream
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comparator. Unary bit-streams (with the same length) are
correlated, and ANDing them gives the minimum bit-stream.
Fig. 5 illustrates the proposed unary comparator for com-
paring two N=7-bit unary inputs. The data- ( ) and Sobol
( ) unary bit-streams are compared to generate one bit of
the hypervector: If the 1st operand (here, data) is greater
than or equal to the 2nd operand (here, Sobol value), then
the corresponding output is logic-1; otherwise, it is logic-0.
The bit-wise AND operation determines the minimum input.
The inverted unary Sobol is checked (by an OR gate) to see
if the minimum equals this. The example in Fig. 5 compares
two unary bit-streams corresponding to values 2 and 5. After
finding the minimum (bronze color in Fig. 5), the inverted
Sobol is checked to see if bit-wise ORing gives all-1s or at least
one logic-0 at the output. If the Sobol number is the minimum,
the OR operation returns a logic-1, and ANDing N consecutive
bits at the output generates a logic-1 bit for the hypervector.
If there is at least one logic-0 after OR, the final AND detects
it and resets the bit of the hypervector. Since, in this example,
the data (value of 2 in Fig. 5) is less than the Sobol number
(value of 5 in Fig. 5), the output is not all-1s, and a logic-0
is generated. Here, we have the second design checkpoint ➋

to evaluate the energy consumption of hypervector generation
when using the proposed unary comparator. The baseline HDC

with conventional comparators consumes 2.49pJ while uHD

consumes 0.24pJ (both designed for D=1K).

After encoding the level hypervectors (Ls) using the steps
above, the next step is the accumulation and binarization.
Fig. 4 illustrates the overall design of uHD. The main con-
tributions are underscored in this figure. The red-colored L

is traversed for accumulation. For each hypervector bit, a
popcount operation returns a binary output, counting the
number of logic-1s. The D-type flip-flops are used in our design
for this purpose. We propose a new binarization method that
operates concurrently with the popcount instead of using an
extra subtractor or comparator for the Threshold of
Binarization (TOB). The size of the incoming data (the total
pixel or feature count), H , is the maximum value to count
up. Hence, a ⌈log2H⌉-bit counter is required. H

2
= TOB is

the critical threshold reached by popcount output for the
decision on the logic-1s-in-majority. When the threshold is
reached, the sign bit is set for the corresponding bit of
the class hypervector; otherwise, it is 0. We propose
to use a masking logic for capturing TOB, which is in binary:
(B⌈log2H⌉...B2 B1)2. As shown in Fig. 4, the masking logic
is hardwired, feeding ⌈log2H⌉ bits to an AND gate. When
popcount reaches TOB, this hardwired threshold guarantees
logic-1 at the output of AND; otherwise, it remains logic-0
[17]. Here, we set another design checkpoint ➌ and compare
the energy consumption of the baseline and uHD design
for accumulate-and-binarize operation. We observe that uHD
consumes 34.7pJ energy per feature of the incoming image,
while for the same data, the baseline design consumes 68.7pJ
energy (both designed for D=1K).
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TABLE I
ENERGY CONSUMPTION AND Area×Delay COMPARISON OF UHD & THE BASELINE HDC FOR EACH HYPERVECTOR (HV) AND IMAGE

Design Approach

Energy Consumption

(pJ)

Area × Delay

(m2× s)

D=1K D=2K D=8K D=1K D=2K D=8K

uHD per HV 0.79 1.58 6.32 40.60×10-12 81.20×10-12 324.80×10-12

uHD per image (MNIST) 113.76 227.52 910.08 5.83×10-9 11.67×10-9 46.69×10-9

Baseline per HV 171.42 415.41 4023.82 11.79×10-9 25.55×10-9 230.33×10-9

Baseline per image (MNIST) 24.68×103 59.80×103 57.94×104 1.70×10-6 3.70×10-6 33.17×10-6

IV. DESIGN EVALUATION AND RESULTS

We evaluate the performance, hardware cost, energy con-
sumption, and area×delay of uHD compared to the baseline
architecture and the prior state-of-the-art (SOTA). We utilize
the standard MNIST dataset for accuracy evaluations [18]. We
compare the hardware costs of the baseline and uHD architec-
ture, specifically for the hypervector generation process. The
baseline design follows the dynamic and independent training
target. Linear-feedback shift registers (LFSRs) are used for
hypervector generation in the baseline design. Table I compares
the energy consumption and area×delay numbers to evaluate
the hardware efficiency of the proposed design. While an
iterative design is required for the baseline design (like i=100
different attempts to get the best-performing hypervectors),
we credit it by assuming that hypervectors are the best, and
only a single-run is sufficient for high accuracy. However, for
realistic baseline training on an edge device, more iterations
are needed for high accuracy, which accordingly increases the
energy consumption of the baseline design. We estimate the
energy consumption for generating each P × L hypervector
in the baseline HDC (Fig. 1(b)) and for each L hypervector
in the uHD design (Fig. 2). As can be seen in the reported
numbers, our proposed uHD is more hardware-efficient than
the baseline HDC.

Table II compares the SOTA HDC architectures imple-
mented on a central processing unit or microprocessor. A
thorough benchmarking is outlined in the HDC surveys by
Hassan et al. [19] and Chang et al. [20]. This table ranks the top
energy-efficient frameworks for overall architecture (including
hypervector generation, binding, bundling, and binarization)
from the aforementioned surveys and contrasts them with our
proposed architecture, which benefits from a novel approach
for hypervector generation. As it can be seen, our proposed
HDC architecture provides remarkable energy efficiency by
exploiting UBC.

Table III compares the accuracy performance of the baseline
HDC and uHD. The baseline architecture is monitored at
different iterations of generating hypervectors (P and L). At
each random hypervector assignment in the training phase
(i=1...100), the test accuracy is recorded. The table reports
the average accuracy values at different checkpoints of i. uHD
utilizes LD Sobol sequences and completes its deterministic
hypervector (only L) assignment in a single iteration (i=1).
The MNIST dataset is segmented to separate the training
and testing images. For the sake of fair accuracy comparison
between the two designs, there is no retaining, no neural
network (NN) assistance, and no prior optimizations. Some
prior work heavily relies on these optimizations; however,
these optimizations and the use of other machine learning

TABLE II
ENERGY EFFICIENCY OVER BASELINE ARCHITECTURES [19], [20]

HDC Framework Platform Energy Efficiency

Semi-HD [21] Raspberry Pi 12.60×

Voice-HD [22] Central Processing Unit 11.90×

tiny-HD [23] Microprocessor 11.20×

PULP-HD [24] ARM Microprocessor 9.9×

Hierarchical-MHD [25] Central Processing Unit 6.60×

AdaptHD [26] Raspberry Pi 6.30×

Laelaps [27] Central Processing Unit 1.40×

This work ARM Microprocessor 31.83×
In a comprehensive survey conducted in [19] and [20], several HDC frameworks were

benchmarked based on their energy efficiency in comparison to reference baseline models.

This table lists the top energy-efficient architectures from [19] and [20]. All frameworks,

including ours, report the overall (including memory read/write, hypervector generation,

binding, and bundling) system energy consumption.

TABLE III
MNIST ACCURACY PERFORMANCE (%) OF Baseline HDC AND UHD ⑥

D
Baseline HDC (Average) uHD

i=1 i=1..5 i=1..20 i=1..50 i=1..75 i=1..100 i=1

1K 82.93 83.60 83.49 82.70 82.88 82.63 84.44

2K 86.24 86.58 87.05 86.35 86.37 86.53 87.04

8K 88.30 88.55 88.25 88.13 88.14 88.13 88.41

(ML) techniques affect the cost of the training hardware.
The impact of using random vectors in the baseline HDC is
reported in Fig. 6(a). The fluctuations in the testing accuracy
underscore the importance of having an iterative process for
selecting the best vectors. Fig. 6(b) reports the accuracy of
prior SOTA HDC systems (the ones without NN assistance,
complex optimizations in training, or multi-models - only with
(w/) or without (w/o) the retraining efforts) in performing
MNIST classification. As can be seen, uHD with single-pass
learning achieves better accuracy compared to the baseline and
SOTA designs.

To extend our evaluations, we utilized various image-based
datasets, including CIFAR-10, BloodMNIST, BreastMNIST,
FashionMNIST, and SVHN [30]. Table IV presents the accu-
racy comparison between the baseline HDC and our proposed
uHD. We note that these accuracy results were obtained without
employing any optimization (e.g., retraining, NN assistance, or
transfer learning). The findings demonstrate the effectiveness
and versatility of uHD across different datasets, showcasing
its potential for various machine vision applications. The
ISO-accuracy values presented show that uHD exhibits su-
perior hardware efficiency compared to conventional learning
frameworks (ML, deep neural networks), which often require
resource-intensive hardware setups. As a result, uHD offers a
more efficient and cost-effective solution to achieve the same
accuracy level.
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Fig. 6. Different accuracy monitoring of HDC designs. Accuracy fluctuations
at each iteration of the baseline design with (pseudo-)randomness (a), MNIST

dataset accuracy from prior HDC works; Ref.s → [4], → [19],

→ [28], → [9], [29]) (b), and uHD (c).

TABLE IV
ACCURACY (%) COMPARISON OF THE BASELINE HDC AND UHD FOR

DIFFERENT IMAGE DATASETS.

Datasets
D=1K D=2K D=8K

Ours Baseline Ours Baseline Ours Baseline

CIFAR-10 39.29 38.21 40.28 40.26 41.97 41.71

Blood MNIST 53.05 48.52 55.86 51.20 57.88 51.82

Breast MNIST 68.59 68.47 69.23 69.11 71.15 70.93

Fashion MNIST 68.60 54.19 70.06 69.97 71.37 70.87

SVHN 60.29 60.06 61.73 61.24 62.87 62.82

For the Baseline HDC, the P and L hypervectors were generated using conventional
random sequence generation.

V. CONCLUSIONS

This study proposed a hybrid HDC system, uHD, by employ-
ing UBC in HDC for the first time. The new design simplifies
hardware implementation, providing significant hardware cost
savings compared to the baseline HDC. uHD utilizes LD
sequences for deterministic and high-quality generation of
hypervectors. It achieves higher accuracy compared to the
baseline HDC while offering single-iteration training. We
propose a novel hypervector generator by representing data
in the unary domain and comparing data using a novel unary
comparator. The impact of adding the proposed modules is
studied by comparing the energy consumption of the proposed
design with the baseline HDC at different design checkpoints.
We hope this work opens new avenues for HDC by employing
the complementary advantages of emerging computing tech-
nologies such as SC and UBC in HDC.
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